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ABSTRACT

The lineary discrete Kalman filter was analuzed using a
frecuency~domain arrFraoach. Frocess and measurement noise
covariances are shown to be critical desidn rarameters whiche
together with the assumed rrior stete and covariance
estimatesy comrletely determine the dain schedule of the
linear Kalman filter. Several relevant desidn techniaues are
illustrated and discussed. The concests of smaothing and

sharrening are demonstrated., Extensions to adartiver

non—linears and non~rF3rametric filtering are briefly

discussedy 3s are arplications to inventory manadements
estimation of time~varuing mesn functionsr and multirle

regression.
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I. INTRODUCTION ANII SUMMARY

A, BACKGROUND

The Kalman filter is a recursive HRavesian least-scuares
estimator of an n-dimensional sustem state vector based on an
m~dinensionsl measurement vector. The filter maw orerate in
a8 J-dimensional coordinate system where Jdimy Jin. The basic
sesumprtion is that esch dimension of the coordinate sustem
var:a2s accordingd to 8 kth order Gauss-Markov process. The
F2iman Filter was develored in the early 1960’s by Kalman and
Bucw [refs. 1 3and 21,

The Kalman filter may be usedl to obtain an ortimal
estimate of the rresent statey a prediction of future states,
arnd/or smoothed estimates of rast states. The current state
estimate is denersally used to determine an ortimal control

inFut, Future state estimates are used to determine ortimum

il

sregsent policy. Smoothed rast state estimates are used for

TR,

data analysis and model buildind. Thus the rotential areas of

r

arrlication sran the field of time series analusis.

gl
]

i

Arrlications of the Kalman filter are numerous and the 5

by

w l|! el

=

theory is beind continually develored and extended., An

W

T

overview of the develorment of linear filterindg theory and an
extensive bibliodrarhy maw be found in Kailath Cref.33. A
reasonably clear rpresentation of theory and aprlications is

contained in Gelb Lref.4],
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Ferhars the widest and most successful arerlication of

Kalman filtering has been to wvehicle tracking and control.
Clark Lref.5]1 has written 8 rarticularly lucid descristion of
the desidn of a Pilter for an anti-aircraft dum fire control
system which is noteworthy for its clarits of rresentation of
the underluyind thoorde It is evident [refs. 4 and S1 that
the desidn process 1is heuristicsy and recuires extensive
testing and aralisis of candidate filter confidurationsr even
when the rroce.s 1s well-understood and is based on a3 mature
technologyg,

The Kalwsn filter has also been arrliedy with varuing
dedrees of successy in economic madelsy inventory modelsy and
even weather models. Considerable difficulty is encountered
in model buildindy because the filter desidgn recuires dgood
estimates of the variance and covariance of noise sourcess as
well 3s an accurate state transition model. A prior estimate
of sustem state and covariance is also requireds which is
somewhat less critical because errors in the prior estimate
decrease with time. These rarameters are often difficult to
determine in hidhlys random Pprocesses of auestionable
stationarity.

The Kalman filter is derived and designed almost entirely
within the time doma.ns a3lthougsh Clark Cref.5]1 does refer to
the concert of filter bandwidth, The Kalman Jilter is
essentially 3 1low-pass filter with a8 very wide transition
band» and higher-order filters have some amrlification at the
mid or low-mid- freeuency rande. In deneraly the stor band

does not completely attenuate high freaquencies. This allows
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the filter to attenuate high-freauency noise somewhat while

s5till retaining some resronse to sudden chandes of state.

B, PURFOSE

The purrose of this thesis is to sceuaint the reader with
the RKalman filters to show how the choice of various filter
rarameters affect its rerformancer and to srovide desidn
insight through analusis in the freauency domain,. The
appraoach is tutorisly» and the reader is referred to some of
the interesting examples which may be found in the

literature.

C. METHOD

The freauency response of several simele filter desidns
were investidated using the Fast Fourier Transform eprodram in
the APL Library 2. The comruter results were .Justified
analytically for the simrlest desidns a3 scalar sindle-state

filter, lerivations are presented in arrPendix A.

D, LEVEL OF PRESENTATION

Full understanding of the theory reaquires a knowledde of
stochastic Processes that evolve over timer as well as an
understanding of digital signal theory in the freauency
domain. The Fourier transform is a3 basic tool. A full

exrposition of the underluaind theory is clearly bevond the
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score of this epresentation., The reader is directed to Larson
and Shubert L[ref.é61 for the theaorwy of stochastic rrocesses
and to Hamming CLref.?] for the theory of digital filterind.
As rreviously mentioned, Gelb Lref.4] and Clark [ref.51 are
good references for the Kalman filter. Bloomfield Lref.81]
and Brillinder Lref.?] are also arrlicable references. Erown
Eréf.iOJ and RBox and Jenkins LCref.11]1 contain related
material,

There arn few readers who are entirely conversant with

bhoth the freauency domain and time domain arrroach to time

series analysis. Neverthelessy 3 duslity exists hetween the
twor and 3 summary of the theory is sresented,

Illustrative examrles will often be based on tracking
modelsy because this is eresently the widest area of
arrlication of Kalman filterssy and beciuse most readers will
vind the concerts of rositions velocityr and acceleration
easy to understand, The concerts are easily xtendable to
other areas. For examrley the ecoromist may wish to rerlace

*velocity® with *trend".

E. SUMMARY OF RESULTS

The steadu—ctate dains bandwidth» and sensitivity of the

. linear discrete Kalman filter are shoun to be completely
determined by the choice of the srocess and measurement noise
covariances. Filter rerformance on stationary or
nearluy—-stationary data can be predicted by comraring the

frequency resronse of the prorosed filter with 3 ssectral

i s e e R SR e, o AT TSI
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analysis of the data. The wide transition barnd of the
amplitude resronse of the scalar Kalman filter can be
sharrened by multirle rasses of the data through a
higher—-dain filter. This can be accomrlished simrly and
recursively, The sureriority of summetric smoothing filters
over non-summetric filters was demanstrated. When used 3s 3
smoother (by using both forward and backward rasses) the
Kalman filter was 3s effective a3s a non-recursive Gaussian
filter. Higher-order filters were shown to have higher
bandwidth and amelification 3s the order of the filter was
increased. A freauency domain arproach to filter desidn may
Pprovide additional insight and enable the desidner to achieve
tetter filter rerformances rparticularly when the sustem state
transition model and noise covariance models are not

well

understood.
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II., THEQGRY

A, STOCHASTIC FROCESSES AND STATIONARITY

A continuous stachastic rrocess X{t) is a3 Gaussian
process if the pProbability densities of all orders arve
multivariate Gaussian densities. It is a3 kth order
Gauss—Markov rrocess if the state at time t derends only on bk
earlier states. If we should exrand the state srace to bk
statess which include a3ll derivatives ur to the (k-1)th, the
future system state vector will derend only on the rresent
state. For exameles if the accelersation of a vehicle is a
first-order Gauss~Markov erocesss then the rosition of the
vehicle is & third-order Gauss-Markov rrocess. Howeversy if
our state seace includes acceleration and velocity a3s well as
rositiony the future state of the sustem is inderendent of
all but the rresent state. If the random acceleration has
zero meansy and variance one over one time increments the
acceleration is 3 standard Wiener erocess wet), The
derivative of the Wiener #erocessy written dW(t)s has =zero
means unit variancesy and is called white Gaussian noiser
which may be thoudght of as a "zero-th order® Gauss-Markov
erocess [ref.4].

The standard Wiener frocess is not stationaryy because
the variance drows linearly with time. That is» the estimste

of a future state based on the rresent state has variance

13

Wi



that is a linear function of time. Howevery the standard
Wiener process has stationaryy inderendent increments. That

isy the variance at time (t+1) diven the state at time (t) is

constant and inderendent of t.
A stochastic srocess X(t) is wide-sense stationary if and

only if it has a constant mearn functiony and a correlation

functicn such that [ref.é1

Rp(t,+ Srtg4 5) = R (%, sty) = R (ty-t,)

that isy the correlation function of the praocess is
inderendent of an 3arbitrary time shift s, A Gaussian rrocess
is strictly stationars if and only if it is wide-sense
stationarge Lref.é6],

The Gauss-Markov assumrtion m3kes rPossible the
develorment of theorwy and arrlicationsys becauser in denerals
angs linear oreration rerformed on a Gaussian rrocess results
in another Gaussian erocessy and the Markov rProrerty allows

consideration of ornly the epresent stater disredarding 311

eprevious states.

B, THE PHILOSOPHICAL CONCEPT OF STATIONARITY

A frecuency—~domain analysis of a3 stochastic process is
only meanindgful if the Process is stationary. If the rrocess
were chanrding over timer the srectrum would chande aver time.
Since the srectrum c3n only be analuzed by means of data

taken over timer such asnalysis of 3 non~-stationary rrocess

P A s 7:‘?#, o TR e o < LgmEme oy RSy TR iR,

S e
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would be meanindless. Howevery if the erFrocess is
*quasi~stationaru®, that isy it exhibits stationary
statistics for a whiler then underdoes 3 chander then settles
down to stationarity adainy the freauercys arsroach is still
usefuly althoudgh inaccurate over the transiticen reriocd. As
an examrley consider an airrlane subJject to random
accelerations due to 2ir turbulernce. An 3rfeProrriate model
might be a third-order Gauss—Markov rFrocess as lond as the
airrlane maintains a3 straight rath or turns 3t 3 constant
acceleration., Howevers the rilot’s inruts to initiate or
terminate a maneuver would result in brief periocds of
non-stationaritys and the model would rerform inadeaquately
during and immediately after the transition reriod.

It may be ardued that evers rractical rrocess can be
considered stationary over infinite time. If the process is
randomy it rerresents an ensemble of rossible rathss of which
any realization in terms of real-world data is only one
rossible pathy and may or may not be closelu rerresentative
of the ensemble. When dealing with realitdsy we are often
forced to assume stationarity in order to make analusis
rossibler and often we obtain dood results even thoudgh we can

never knou whether or not the assumertion of stationarity is

really valid.,

e

C+. DUALITY OF THE TIME AND FREQUENCY DOMAINS

1. Fourier Series

A very wide class of mathematical functions mav be

15
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rerresented by the Foudrier series Lref.12]1 as follows!

a(t) = 5, + 2 (8 cos nt + b sin nt)
- L 1]

where 0 = t £ 2%,

.
LY

Existence and converdence of tnis series rerresentation

require only that g(t) be everuwwhere single-valuedy and
rossess a3 finite number of maximar minimay arnd finite

discontinuities. The function g{t) need rnot he

"

differentiable. Arg function meeting the above criteria can

be thoudht of as a constant mean function agr elus an

infinite series of sines and cosines of intedral frequencies

and various amplitudes. Of courser the inderendent variable
t must be shifted and scaled to the interval [ 0.27W 1. Note
that the lowest freauency Fresenty aside from the
zero-frequency means is one cuycle for the sean of 4(t).
Among the functions meeting the criteria are 3 sauare rulses

an impulsey and any manifestation of 3 random walk. In

kS
&
=1
2
.
-
%

practicer the Fourier analusis of a3 function d4(t) requires

the truncation of the infinite Fourier series. This results

W ey

in 3 smooth least-scuares arproximation to the function g(t). 2

i, s

There are riprles in the arproximation if the functiorn d(1)

is not differentisble or if the truncation is +too severe.

This is known as the Gibbs rhenomenony and is illustrated in
fidure 1y which was taken from Hamming Lref.7]1. By takind a

sufficient number of terms in the Fourier exransions we can

imrrave the closeness of the areproximation.

16
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Fidure 1. The Gibﬁs Phenomenon

2+ Basic Concert
The basic concert of the duslity between the time and
freauency domsins is so simrle that it often dets lost in a
forest of Fourier transforms. The time reriod is +the

recirrocal of frecuency, The bdasic relationsnir is
V21 = f = 1/7T
where v is the freauencw in radians/unit timesy f is the

freauency in cucles/unit timey and T is the time reriod for

one cuycle. Stated simeluyy freauercy is the inverse of the

time reriod.

3., Discrete Dats and the Samrling Theorem

The digital computer allows the efficient analusis of
continuous rhenomena by means of discrete arproximations. We
saw earlier that the lowest frecuency contained in a3 Fourier
exransion of 8 function €(t) was the recirrocal oaf the time
span covered by the function. Similarlyy the famous Samelindg
Theorem Lrefs. & and 71 states that if a function d4(t) in

continuous time is samrled at constanty discrete time

b ,W
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intervals At (that isy 8t 3 rate of 1/At)y then the highest
observable freauencwy is 0.5 cycles rer measurement interval
At. This means that 3t least two observations are recuired in
each cycle in order to observe that rarticular freauency.
The freauency 0.5/0Mty usually written simely 0.5y is
referred to as the Nwauist frecuency. The result is the
aliasing phenomenons which is familiar to most moviedoers.
During the chaser the stadecoach wheels arrear to stor or
rotate slowly backwards when the rate of rotation of the
wheel srokes (sprokes/sec) steeeds 172 the camera rate
(frames/sec)., When higher freauencies xist in the function
g(t) samrled 3t 3 rate Ats they are folded back and arpear in
the frecuency srectrum of the sameled data as freauencies
less than the Nuauist freauency, The samrling theorem shows
that a srectral snalusis of discrete data is only meanindgful

over the Nuwauist interval [ -0.53/Aty +0.5/At1,

4, The Discrete Fourier Transform

Ang  function g4(t) for which a converdent Fourier
series exists may be rerresented in the frecuency domain in
terms of real and imadinary rartsy or in terms of amrlitude
and shase andler as a function of frequency. It should be

noted that the function d4(t) m3y also he comrlex-valueds but
we will deal with only real-valued functions. In the
continuous domains the formulas

[

i
g(t) ”5‘7!‘ G(v) exp(ivt) dv

and g
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B(v) = [a(t) exr(-ivt) dt

reprasent 3 Fourier tranmsform rair. The freauency resronse
G(Q) comrletely determines the time function d4(t) and
conversely,

If the function 4g(t) is sampled at intervals t =

Os19294ee9n1 the time-to-freauency transformation becomes

et N
o B(v) = 2 d(t) exr(~ivt) t = Orlsseern
= t®0

which is defined only on the Nuauist interval [-TT,» T 1, here

defined in radians. The formula may bhe written in 3 more

g . “Pamiliar form by usindg the Euler relation
exp(-ivt) = cos vt - i sin vt

85

n

6¢v) =2 d(t) (cos vt - i sin vi)
¢20

which is continuous in v on the interval C[-Wy M1, The Fourier

",

mgﬁ(

4

transform is a3 bit difficult to handle analytically for all

but the simrplest functions, but the discrete Fourier

AL

transform is denerally easy to comrute by uyse of 38 Fast
Fourier Transform (FFT) erodram available in most comruter

- libraries. The aoutrut will denerally be 3 very close discrete

R AR e, DA

arrroximation to G(v)ye if the sepan of d(t) is larde enoudgh.

The inverse transformation can also be made.
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Since G(v) is comrlex valued whenever the function 4(t)
is not suymmetricy it is often useful to resresent it in terms

of amrlitude and rphase. The amelitude is

|6cor] = Jecnige-w =/ERe(v)Jz+ CIm(v) 12

where Re(v) and Im(v) are the real and imadinary rarts of

G(v). The rhase andle is

8(v) = arctan Im(v) / Relv)

B
2
B
=]
&l
E
R E
£
E
]
¢
¥l
]
1=
2
k-
7
z
2
B El
2

D. THE DOOB-MEYER-FISK DECOMFOSITION

In most rsractical arrlicationsy a finite~-variarce

samele~continuous stochastic erocess X(t) can be written

T T
X(T) = X(0) + ‘/A(t)dt + fB(t)dw(t)
o

where X(0) is the initial value of that rrocesss A(t)dt is

rredictables smooth behavior determined by a3 set of
deterministic differential ecuations describing the suystem:
and B(t)dW(t) is noiser where dW(L) is white Gaussian noiser
and B(t) is a smooth transformation that is sometimes thought
of as "colaring® the noise. Such a rerresentation is called
- the Doob-Mever-Fisk decomposition (Cref.61r which mawy be
thoudght of as serarating the srocess into a3 sidgnal and noise.

Several imrartant peoints must be made with redard to this
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eauation, It is not intended here that the exrression be
evaluated analutically. The intedral B(t)dW(t) is an ItT
intedraly which 1is not eaven 8 stochastic version of 3
StieltJes intedral [ref.61. Alsosr althoudh the rerocesses
A(t) and BRB(t) are smooth functions that may be considered
deterministic rerresentations of sustem behaviory thew are
not necessarily known to the observers even when an adeauate
techriclodical rerresentation exists.

Consider adain our piloted sircraft beind tracked by 3
radar. The srocess A(t) rerresents the dunamics of the
airframes as affected by the control inruts of the riloty
which are unknown to the radar observer. The eprocess B(t)
consists of several rarts. One is the measurement rrocessr
which maw or ma3y not be known to the radar observer. For
examprler 3 nutatind radar antenna might imrose some reriodic
error in the messurement» which would be manifested in the
sracess B(t). Overlaid on this might be 3 white Gaussian
ncise measurement error. Air turbulence could alsoc be
rerresented as white Gaussian noiser whichr howevers could
ocnly be manifested throush deterministic airrlane dunamics.
There are those who would ardue that the rilot should slso be
modelled 3s 3 random variable., In any events the process
BR(t) midht be further decomrosed into several processess here
at least airframe resronse to air turbulence and reriodic
radar antenna dunamics.

The vital observation is that if the frecuerncy content of
the processes A(t) and B(t) are known to be differents thew

can be rartislly serarated by a2 spectral asnalusis of the

e
3
I
3
=
=
£
3




data. In our examrler sircraft have natural dynamic resronse
frequencies in 311 cortrol axes. These can be estimated
closelys even for enemy 3irrlznes» and are Zenerally similsr
among similar tures of sirrlaness slthoudgh thewy varw with
girspreed, It is rhuysically impossible for the aireplane to
resrond faster than its highest natursl dunsmic frequencies..
Any freauence content higher thanm this must be noise. If the
radar sustem duramics are of 3 higher freauerncy than thisy
thew can 3lso be serarated., The rilot will take advantade of
the full resronse rate of the airrlane only very rarelwd.
Therafaorey low freauency comronents are most likelw due to
=ilot maneuvers. 0Of courser since white Gaussian noise has
a flat frecuency seectrum as 3 result of asliasing Cref.7dy it
is imrossible ta serarate 311 of the noise frouw the sisnalﬂ

Howevery it is often rdssible to remove aquite & bit of it.

E. DIGITAL FILTERS

A digital filter is & linear transformation arelied
iterativels to 3 set of data roints. The rurrose here is to
serarate naise from the sidgnal. The simplest didgital filter
is the simrle averader uwhich estimates the mean value from
the datay and smooths out 3ll fluctustions. The most deneral

form of the digital filter was stated by Hamming [ref.71 as

[_J av
w(t) = T atk) z(t~k) + f_,bm) % (t-k)
b

b

wnere the estimate ~{(t) a3t some roint t+ is a linesar

{

R

i

asi

£

T Oh RLR G M A S UL

»

A

i

s

TR,

2

3

by

i

N
<y

i
uﬁ )

(et
¥

o "

G

’5 »«1’1&

b

',




combination of the data roints 2(t~k)y and rerhars of the
sravious estimates x(t-k). The coefficients a(k) and b(k)
are weighting coefficients snd mavy of courser be zero. As a
result of the samrling theoremy the filterind rrocess is
meanindless wunless the measurements =2(t-~k) are made at
eaualls sraced intervals alond the t axiss where t is

usualluy but rnot necessarilyy time.

1. Some Classifications of Digital Filters

—A

Didital filters may be classified 35 summetric or

non—-symmetricy and 3s recursive or norn-recursive. A

summetric non-recursive filter is orne in which a3ll b(k) eaqual

zero and 311 a(k) = a(~k)y such as the filter

=LY + 2.2 =(L41).

An exanrle of a recursive filter

#(t) = a =(t) + b x(t-1) 0<3<1, b = 1-3

which is not symmetric. This earticular filter maw be

A B TR

You—

exrressed as

-

#(t) = a =(t) + bl 3 2(t-1) + bl 3 2(t-2) + 444,11

which reduces to

L8 oy

3(t) = 3 2(E) + ab T(L-1) + 305 2(4=2) +eeot b ZCE-1) Fooo

P Ry T T XA TR PRw PP m—
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The recursive filter extends to the infinite rast» althoush
the coefficients ab” will arrraach zeros if Ibl<il. In this
caser 3 recursive filter can be closelw arrroximated b4 -
non-recursive filter. A Frimary advantade of the recuresiv=
filter is that old data need not be stored. New estimates
mas be computed simely and raridle as time evclves. This is

an imrortant advantade for reszl-time srrlications.

2. Arrlications of Didital Filters

Didgital filters are wused to serarate 38 sidnal from
roiser to serarate various frequency components of 3 sidnaly
and/or to rerform such mathematical functions as intedration
and differentistion. A review af Simepson’s rule and the
Trarezoidal rule should convince the reader that these
numerical irtedration techniques arer in facty recursive
digital filters, Sometimes a filter has two rurroses. For
examrley it might be desirabler n estimating velocity from
successive ohservations of rositions to simultanecusly
differentiate and remove high freauency roise. UWhen a filter
is used to stor rart of the freauency srectrume it is
referred to 3s 3 "low-rass"y ‘*hidh-rass'y "hand-pass"y or

*hand~stos® filtery derending an its function.

3. Analusis of Digital Filters

In the time domains & didital filter is described

comrletely by its imrulse respanse functions which is nothing
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more than the resronse of the filter to dats consisting of 3

strind of zerosy 3 sindle oney followed by zeros., The outrut

of the filter is then simrly the weighting coefficients al(k).

If the filter is recursivey we might not bhe able to deduce

the recursive form from the coefficients a(k)sy but that will

ot  concern us here, The Fourier transform of the

imruulse-resronse function

N
H(v) = 3 alk) exr(-ivk)
hes-N

will completely specify the frecuency resronse of the filter,

If the filter is summetricy there 4ill be rno imadinary rarts

and hernce no rhase shift. If the filter is reéhrsive: it

T A T e A A e T S rsasr it vy

cannot fFractically be summetricy and the summation will

generally run  from zero to infinity. That isy the impulse

resronse Wwill extend infinitelw far into the futurer which

means that the filter resembers all of the rast.

The duality of the time and frecuencw domains allows us

to srecify 3 desired frequency resronse and to desidgn an

arrrorriate filter by caloulating filter weidhts» or to

analuze an existindg filter by calculating the freauency

resronse from the filtev weightindg coefficients.

F. DATA ANALYSIS AND EXPERIMENT DESIGN

No didital filter should be arplied to data analusis

without 8 clear idez of the effect of the filter uron the

data. Slutsky and Yule first noted that some smoothing




formulas induced reriodic functions in the smoothed estimate

R P A

that were more the evfect of smoothing than of the oridginal

data Lref.71, A srectral anslusis of rerresentative raw data

g 0 e

can be helpful in deciding on an arprorriste filtering

technique. Howeversy such data as economic time series or

[T

weather data 2ara tyrically very noisys are based on &
relatively short run of datas and cannot be described by an
adequate technological model., The analyst must bhe aware of
these sroblems. Sometimes there are no dgood solutionsy but a
srectral rerresentation may rroduce freecuencies that can bhe
xrlained on rationsal drounds.
% Another rotentisl ritfall is a result of the samplindg
: theorem. Consider the timely examele of an a3ir eollution
madel. It would be resonable to susrect that 3ir epollution
would follow at least 3 daily cucley or rFerhars an eight hour
cycle if morning and evening rush hours were considered.
Daily sameles of 3ir rpollution could not hore to uncover
cucles of 3 sharter period than 2wery two days., Samrles
every four hours would be mardinally 3decuate. Hourly
samrles would be necessary for 3 good analusis. Additionalluy
recall the reauirement for eausllu-sraced sampling intervals.
For various reasonss the analyst maw have no control aver
data collection. Howevery he must 3luwads understand what has

been dones or could have bheen dones to the datar as well as

what he is doing to it in order to avoid erroneous

conclusions.
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III. THE LINEAR DISCRETE KALMAN FILTER

A. DESCRIPTION

The linear discrete Kalman filter is a3 recursive Bauesian
least-sauares estimator of the state vector of a linear
system bassed on a3 vector of noisy measurements made a3t
discrete time intervals. The rrocess to be estimated is
assumed to be an n—state Gauss-Markov rFrocess of order ke
subject to eprocess noise W with zero mean and covariance
matrix Q. The srocess is observed by an m-dimensional
measurementr subdect to measurement noise V (not to be
canfused with freauency (v)) with =zero mean and covariance
matrix R, The filter recuires a erior BRavesian estimate of
sustem state and covariance. The recursive estimate of sustem

state at time t is obtairned by the formuls

X(tit)= X(tit-1) + K(LILZ(L)-HX(tit-1)1]

where
Xtit) state estimate based on current measurement
Zy) current measurement

X(tit-1) state estimate erior to current measurement
K(t) Kalman dgain matrix (to be discussed later)

H cbhservation matrixs which is constant

The derivation of the Kalman filter equations may be

27
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found in Gelb Lref.41. A summary of the filter eauations is
rresented in fidure 2y which should be consuited in order to
follow the subseauent discussion.

In denerals the state model rerresents a dunamic sustems

that isy ore which chandes with time, The extrarolation of

; the state estimate to the time of th> nex observation is

obtained by the formula?

X(t+1it) = § X(tit)

-

: where @ is the state transition matrix. The observation

H process occurs according to the concertual relation

- Z{t) = HX(L) + V

§ where X(t) is the true sustem state. observed through the

; observation matrix Hy and V rerresents measurement noises

which is assumed to be 3 Gaussian random variable with =zero
mean and covariance matrixz R. Note that the process

rerresented by this formuls is assumed to occur in the real

world. The computation does not occur in the filter. Rathers

i the measurement Z(t) is an inrut to the filter.

In the linear Kalman filterr the dain K(t) does not
derend in 3ny way on the data., It derends only on the models
and is therefore extremelu sensitive to assumstions. G6ain is

3 calculated according to the formula

-
K(t) = PC4IH CHPCEIHT + R
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where FP(t) is the covariance in the system state estimate
prior to the current measurement and R is the covariance of
the measurement error. The cavariasnce is urdated according

to the formuls
(t) = LI-K(t)H] F(L)

where Z(t) is the state covarisnce diven +the current
measurementy and I is the identity matrix. The covariance is
extrarolated to the time immediately srior to the nex

cbservation by the formula
T
P(t+1) = § 2(t) 3 + QA

where § is the state transition matrix and Q is the
covariance of the process nroise. Combinind the above two

equations shows that the covariance of the state estimate at
the time of the current measurement derends on the srevious

covariance according to the formula
S(t) = LI-K(t)H] £F Z(t-1) § + QI

Filter rperformance is very derendent on adequate
modellindy particularly on the state transition model § and
the choice of noise covariances R and Q. To a lesser extenty
rerformance 3lso derends on the initial estimates of sustem
state X(1{0) and coavariance P(1{0). Howevery the 1latter

rarameters are less imrortant because their effects decrease

30
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with time., If the matrices Ry Q» &r and H are constant in
timer the dain K(t) and covariance matrices E(t) and F(t)
eventually reach 2 steady stater and are comrletely
determined bw Ry Qy $» a2nd H,

For @ diven linear filtery it will be shown that filter
ga3iny covariances and freauency resronse will be comrletelyd

determined by the choice of R and Q.

BR. THE SCALAR KALMAN FILTER

The multi-state Kalman filter is 3 rowerful comrutational
device, Howevery it is difficult and often imepossible to
manirulate in closed form because of the freauent cccurence
of sindular matrices. An analysis of a3 sindle-state (scalar)
filter can be used to illustrate the mechanics of the Kalman
filtery and to aid in develoring an intu tive understanding.

In the discussion that followss it is assumed that 311

ritrices are scalarsy andy in rarticulsrry Q and H ecual one.

By bt

s

Matrix notation is preserved for clarity. Derivations may be

Ll

found in arrendix A.

i B

1. Trangient and Steaduy-State Gain

It can be shown (arrendix A) that the scalar Kalman

dain can be exrressed recursively as

il s ok o ot e s ol >

K(t) = K(t-1) + Q/R
. K(t-1)> + @Q/R + 1

! When the filter reaches steaduy-states the da3in 1is constant




and

The inverse relatiormshir is

b ] o)
i
Iz

Thusy the varisnce ratio Q/Ry which is the ratio of rrocess

A N LA R S LR LA O A B AR

noise variance to measurement noise variancey comrletely

determines the steadu-state da3in. The steadu-state filter is

camrletely described by the formula

X(t) = K Z(t) + (1-K) X{(t-1)

2, Freaquency Response

BRI s o SRR

Letting K = a and (1-K) = by the imrulse-—-resronse

BRGHR

furniction G(t) maw be written

<
G(t) = ab » t=0s1v294400.

The Fourier Transform is

T B A RO A G

H{v) = G(t) exp (~ivt)dt

o
H{v) = a3 th exp(-—iv)]t
{z0

H(v) = 3 /7 L1 - b expr(~-iv)]

o = o A S -y - S e s = — U i P R Tt
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Since the filter is not summetricy the freauerncy resronse

Wb Vo b

H{v) has both real and imadinary erarts, The amplitude may he

written

A= JHw| = AGOHGY) = a7 J1 + b -2b cos v

which reduces to B}
A = _Q/R ¥
as/R + 2(1 ~cas v? :

The ehase andle maw be written

sve
R R It

1

"
Kk Qe K XA

8(v) = arctan ( -b sin v )
1 -b cos v/

-t
TETIN)

The andle for maximum phase shift is

vimay 8) = arccos b = arccos (1-K)

v (max 8) = arccos (1 + Q/2R -~ /(!‘/4?2z + Q/R )

Therefores the wvariance ratio Q/R also comrletely specifies
the steadu~state frequency resronse of the filter. Amrlitude

and rhase relationshisr for severasl values of dgain are rlotted

A R AV B S T R L T R AR S W ki

in fidures 3 and 4.

It is evident that high Q/R (high gain) reduces the rhase
lag of the filter but allows more of the high-freauency
comronents to F35S. Conversalyy low Q/R (low 43in)

attenuates more of the high-frequency comronentsy at the

exrense of an increased rhase lad. Notes that even at verwy
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low dain (low Q/R) not all of the high-freauency comeonent is !
g
attenuatedy and the rhase lad is quite severe. The slore of 3
the amrlitude chande is uite shallowr imeluing that %
attenuation increases dradually as freauency increases, This §A
= ".’::
is a8 consequence of the assumptions and rerformance will not %

he adeauate if the data does not reesresent a Gauss-Markov

o

processy but in fact rerresents some rhenomena chanding with

Lo
Tria 3 e ki sl

time.

I E1 vt a1 8

C+ IMPROVING THE FILTER

The transition band of the filter can be sharrene:dr and

more of the high- freaquencw comronents eliminatedy by running

. .
D T T Rl R e

the data throudgh two filters in series. The basic sczlar

L v

filter was

oy ey DR )T s

[

®(t) = a3 =(t) + b x(t-1) B

where 3 = K and b = (1-K). Runming the datas throudh the

filter agains we obtain a new estimate v(t) » where
y(t)y = a x(t} + bh wi{t-1)

It should be evident that we can accomelish this 311 in one

ster as

2
G(t) = avz(t) + 2b w(t-1) - b w(t-2)

Uans it nme 4 8rruen ) russ

3
E
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We need only to save one additional srevious estimate w(t-2)

as well as g(t—-1)., The impulse resronse function is

g(t) = (£+1)3%85y t = Oslrees

We have rerformed 8 convolution in the time domains, which
corresronds to 8 multirlication in the freauency domain.
This may not be exactluy what we want. Let us surrose that we
want the weightind coefficient for the rresent data roint
=(t) to be 0,27 in both cases. This reaquires a = 0.27 for
the basic filter and a = JBTE? = 0.32 for the double filter.
The impulse respaonse function for both filters is rresented
in fidure 5. Note that the double filter fordets the rast
more readily. The amplitude and rhase shift for both filters
is presented in fidures & and 7. The dgain for the scalar
filter was 6.27v corresronding to a8 variance ratio (Q/R) of
0.1. Also mnote that the double filter has somewhat better
high~-frequency attenuations somewhat less attenuation at low
freauencies» and 3 slightly sharrer (steerer) transition. We
would therefore exrect it to be a bit better at serarating a
low-freaquency signal from noise. At low freauenciesy the
double filter has less rhase shift., Howevers rhase shift is

more severe at freauencies above 0.5 radians.

D. FERFORMANCE COMFARISON

The basic scalar filter and the imeproved (double) filter
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were comrared usind the data illustrated in fidure 8. A

seriegs of inderendent normal random rumbers with =zero mean
and variance ten were denerateds to simulate measurement
noise., Thew were added to 2 nominal function which was a
combination of sters and a3 rames. The rame function rises 1
unit each measurement intervals, which corresronds to one
standard deviation in process noise Qy so a3t least during the
ramr functiony the dats corresronds to the filter desidn
variance ratio Q/R = 0.1, A srectral asnaluysis of the dats is
rresented in fidure 9. The sidnal and noise are rfresented
serarately and in combination. Note that the noise-only scale
is exranded. The noise srectrum is irredularr but overall
uite flat. The sidnal consists mostly  of very low
frecuenciesy hut also has some high frecuencies, This would
be exrectedy since ster and rame functiorms recuire very hidh
frequercies in their Fourier exransion. The high-frecuency
sidnal is submerded in noise. The datar of courser does not
fulfil the assumetions from which the Kalman filter is
derived: Howeversy the real world seldom does either. We are
looking for robustness.,

The filters were first tested on the sidnal alone. The
results are eresented in figure 10, It can be seen that
neither filter can resrand instantaneously to the
discontinuities in the functions since high freauencies are
attenuated. Both filters las after discontinuities and
durindg the ramP rise. This is 3 consecuence of the non-
symmetric nature of the filters and illustrates the phase

lad., Note that the double filter rerforms a3 bit bettery
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remaining closer to the data throughout (it is 3 reculiarity
of the slottingd routine that only one sumbol will be rlotted
wher ever data roints coincide. Thereforey data raoints that
do rot arrear should be redarded a3s occurrind simultareocusly
with the ones that do asrear).

The filters were then tested on the noisv data, The
results are rresented in fidures 11 and 12, The latter rlot
has the datas surrressed so that the scale can be increased
and more resolution obtained,

The same trends can be observed as were Freviousld. The
double filter 1lads less during the trend and transitions.
The double filter aprears to follod the noise 3 bit more
closelyr but overall it follows the sidnal better than the
basic filter. The averade varisnce between the sidnal and the
filter was 4.20 for the double filter and 5,10 for the basic
filterr which was an 18Z imrrovement for this simrle
modification. The imerovement is due to the fact that the
double filter weights more recent, data more heavilws and
remembers less of the prast than the scalar Kalman filter»
even though the weidght on the present observation is the
same.,

This simrle exreriment is only intended to accuaint the
reader with rossible improvements to the Kalman filter. Like
any tooly the Kalman filter should not be arrlied
indiscriminantly., The interested reader is referred to
Hamming Lref.7] for the basic princirles of didgital filter

desidgdn.
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E. THE TRANSIENT CASE

The sorhisticated reader has no doubt noticed that the
steaduy-state scalar Kalman filter is equivalent to the
Ros~Jdenkins IMA(Os1s1) model L[ref.ii] and to  Brown’s
exronential smoothing model [ref.10], Zehna criticized the

xronential smoothind model Lref.131, noting the bias would
occur if the steadu-state model was arrlied with an
inarProrriate erior estimate. Bessler and Zehna Lref.14]
develored 3 dain schedule which they call finite exponential

smaothing. Their formula for dain is

alt) = 3/¢1-5%)

where a is the steady state dains b = (1-3)s and 3(t) is the
dain schedule 3s 2 function of +time. It is similar to the
Kalman dain schedule if the initial Kalman dain K(0) is
chosen 235 one. Irn both modelss no prior estimste is
required, The weight on the first observation is one. A
comrarison of the two models is illustrated in figure 13y for
a steadu-state dain of 0.2 3nd an initial d4ain of 1. The
Kalman d3in was calculated accordindg to the recursive formula -
in section III.A.

The Kalman filter dain converdes fasters althoush the
difference is not dreat, The scalar Kalman filter possesses
two other advantades over the finite exronential smoothing

technhique., Firsty if & dood erior estimate does existsy the
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Kalman filter allows the initial dgain to be chosen as less
than oney and its value will be determined by the assumed
covariance of the rrior estimate. Alsor the Kalman model
forces the analust to at least -~ ink about the concerts of
measurement noise and Process noisey and to estimste the
noise variance ratio Q/R.

As noted beforey a frecuency analysis of the transient
case is not arprorriste. Howevery it can be thoudht of as a
case of transient bandwid:h., The filter is initially set to a
higher dain than steadu~state dgain, If there is no rrior
estimate availables the initial dain is oner and the filter
is imitially an infinite-~bandwidth or all-rass Pilter. As
datas are aceuired dain drors and the bandwidti narrows until
steadu-state conditions are achieved. The concert of
transient bandwidth is imrortant to the subdect of adartive

filterings to which we will return.

F. HIGHER ORDER FILTERS

The main beauty of the Kalman filter i1is not in its
statisticalle unbiased method of calculating dains but in its
rowerful matrix formulationr which 3llows it to be arrlied as
a multi~dimensional model incorporating any order of
differencind desired. As the state srace is increasedr it
auickly becomes imrossible to analuze the filter
analytically. High-order multi-dimension filters can also
easily exceed the carascitu of rpresent digital computers for

real-time sprlications. Fortunatzluy it has been found that




the state srace can be reduced and dimensiorns decourled with
very little dedradation in the overall accuracuy of the state
estimate Lrefs, 4 and 51, For examerley if & 12-state model
can be reduced to ? states and can be adecuately rerresented
be three 3-state modelss the matrix calculations can be
considerably simrlified and sreeded ur.

We will examine 3 second-order (first difference)
filter» which can bhe used to estimate trends or velocity., We
will use the latter term. FPosition and velocite are to be
estimated based only on successive measurements of rosition.

The state transition and the observation matrices are

1]

£1 01

The covariance matrices &» Py 3nd Q ares of courses 2 by
2 matrices, The state vector has two elementsy velocity and
rositions while the measurement vectar has only rosition.
The measurement error R is a 1 by 1 matrix which we will

varg., We have chosen Q 3s

2= o]

arduing that any rrocess noise will be contasined entirelw in

velocity, That is» there can be mo random motion that is not

caused by 3 random velocituy. Randomness of velocity will feed

into rosition throudh the state transition matrix,

51

]
§
2
§
-
§
;
:
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Even in this simele caser solvind analutically for

steady—state dain in terms of R and @ recuires solving a

: system of 4th order rolunomial ecuations. We will ort

instead for a computer solution. The reader may continue to
think in terms of the noise variance ratios where R will take
on the values 1y 10y 100 angd Q will remain constant as above.
Since there is only one non-zero term in the Q matrixy we maw

think of the noise varisnce ratio as the scalar quantity

QA(232)/Rs The resulting steadu—~state dains are

Naise Variance Position Velocity ?g
Ratio Gain Bain %
1,0 V769 +481 =
0.1 +553 +211
0.01 + 362 +080

As would be exrectedr the rosition #3in is much higher
than that of a3 scalar filter at an ecuivalent noise variance ;;
ratioy because the rrocess varistion now arrlies to velocitu
rather than rosition. The velocity dain is considerabls less
than the rosition dainy since the velocity is /not measured
directly bt must pe estimated from suecessivJ messurements
of rosition. The imrilse~-resronse function of #%e medium-gain
filter (noise variance ratio 0.1) is rpresented in figure 14, ﬁg

The amplitude resronse of these three filters is
comrared in fidures 15 and 16. The most striking feature is
the amrlification which occurs at a3 seecific freeuency in the g

rosition freauency reseronse. This implies that the filter is
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mast sensitive to motion inm 3 rarticular freauency rande.
Thuss the natural freauency of the sustem to be observedy if
it is knownsy is a sidnificant desidn rarameter. Adainy we
observe the attenustion of high-frecuency noiser althoudgh a3
significant amount still remains at the maximum frecuency
(rote that fidure 16 does not include the oridind.

The freauencs response of velocity shows 3 reduction in
amprlitude at low freecuency., The amrlitude at zero freacuency
is ecual to the velgecity dain. This is far from idesal
rerformance for a differentistors which should have an
amelitude resronse of zero at zero freauemcy; with a3 slore of
one ur to the cutoff freauency Lref.71. The differentiator
isy howevery reasonably effective a3t reduecing the amplitude
of high-freauency comronents.

The ehase shift of the filters adgain shows increasing
rhase lad as dain is decreased. The oversll effect is
similar to the sealar filterr and is otherwise unremarkable.
Therefores rplots are not included.

The data of fidure 8 was tested on the lowest-dain
velaocity filter., Note that the spectral content of the datsa
(figure 9) is euite low-frecuencys and that the bandwidth of
the louwest dain velocity filter is auite widesr and indeed is
higher than that of our scalar filter. So it might bhe
exrected that the velocity filter would have some trouble
with the datsa,

The veloeity filter rerformance on the nominal function
only is presented in fidure 17. The filter avershoots quite

badly at the discontinuous sterss whichs of coursey are an
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imrulse in velocity. The avershoot is less 3t the start and
stor of the trend. It does settle down and track the trend
without 1lagy which is an imrrovement in rerformance over the
scalar filter. It should be noted that with higher dains the
filter would track the nominal data bettersy while with lower
d3iny the overshoots would be more severe.

The rerformance of the velocity filter on the (3ta is

illustrated in fidure 18. As wrectedy the filter tends to

follow the noise +too mueh. Howevery it does follow the
discontinuities nmuech more @uickly than the scalar filter.
This roints out the fact that the higher-order filter is more
effective 3s 3 maneuver detector but it is less suitable for
smoothing very noisy data. This again illustrates the
concesrt of bandwidths which is uite high even in  the
low—-gain velocity filter.

In retrosrectsy the decision to choose R(171) as =ero mawy

not have been wise. Allowing some rrocess noise in rositiony

exclusive of velocitysr could well have some smoothing effect

aon the velocity estimatey which would result in smoother

R T T TR e e ey b e

i

one—-reriod ahead rredictions. This could smooth the

oreration of the filter 3 bit. The rossible combinations of
filter rarametersy evern for this simrle filters are quite
NUMETOUS »

The frequency response of a3 second-difference

{acceleration) filter was 3also determined for comparicon.

. The results are presented in figure 19. The @ matrix was

zero excerlt for Q(3+3)y which was one. R was chosen as 10y

resulting in 3 nominal noise variance ratio of 0.1. Adainy
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FREQUENCY KESFOMNSE OF ACCELERATION FILTER
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IV, ESTIMATIONs SMOOTHINGy AND PREDICTION

3+ ESTIMATION

Sao fars we have been concerned only with estimstion of

the present state. A filter desidned to rrovide such 3an

estimate cannot be summetricy hecause it can rut no weight on
future observations. Thusy phase ladg is inevitables and is
one of the parameters that should be considered in the desidn

PrOCess.

B. SMOOTHING

Smoothing is the wuse of a filter to rrovide an estimate

of past states. Such a3 filter cam be made summetrics which
comrletely eliminates the rhase 1lad, Non-recursive smoothind
filters cause 3 loss of N data roints at each end of the
datar where the sran of the filter is (-Ns N).

The Kalman filter can be used as a smoother by simPly
runnind the forward estimate through the filter in the

orrosite direction. The impulse resronse function of the

scalar filter was

4(t) = ab

.

It can be shown (arrendix 4) that the impulse resronse

R

W A

|
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function of the smoother (forwsrd and backwsard filters
combined) is

G(t) = ast/(1+b)

which is Just the convolution

g(t) @ g(-t)

The Kalman filter 1is able to rrovide an estimate
throughout the sran of the data, No data is lost at either
end. Howevers due to transient effectss the data near either
end is subdect to rhase shift and some increase in ga3in. The
filter is necessarily not symmetric near each end of the data
SPan.

Gelb Eref,4]1 includes a complete discussion af
fised-pointy fixed-lady and fixed-interval smoothindg, We
will restrict our attention to the scalary fixed-intervaly
steadu-state caser idrnoring the end effects.

The scalar Kalman filter of section III.D (noise
variance ratio of 0.1y dain of 0.27) was used as a smoother
on the data of fidure 8, The results are presented in
fidure 20. As comrared to the one-rass prerformance as
illustrated in fidure 2y the smoothed data shows rhase lad

removed and reaks in the oscillsations reduced. Howevers the

smoother has less abilitwy to follow the discontinuities in
the nominal function. The removal of the rhase lad is

characteristic of any summetric filter. Howeversy the reduced
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abhilite to follow the discomtinugities is the result of
reduced effective dain. Since we have convolved the filter
weidhtsr we have sauared the amrlitude of the frecquency
response, The weidht on the data roint a3t (t=0) is reduced.
The effective gzin was 0.27 for the forward filterr» and 0.156
for the smoothing filter. This reduction in effective dain
is rnot addressed in the literature on the Kalman filter, and

is unclear how smoother gain should be chosen in relation

the noise variance ratio Q/R.
A COMFARISON OF TWO SMOOTHERS

The Kalman smoother of the rrevious section was comrared
with a Gaussian smoother to illustrate some desidn ortions
and rrocedures. The Gaussian smoother was chosen from amond
3 hude variety of datz windows because it has dood smoothind
rropertibsy and because it is rarticularly easw to desidn.
Interest;nslsy Freliminsry xreriments showed reretitive
arrlications of 8 Kalman filter to result in an arrroximastely
Gaussian filter weight distribution, A comrarison of the
Gaussian smoother to a2 variety of other windows is contained
in Harris Lref.181.

The Gaussiam smoother is a3 summetric filter with the
weights chosen 3ccording to 3 discretized and truncated

rormal distribution. The formula is

g(t) = K exp(—t‘/zaf)




whore t is anm inteder on the rande (~Ny N) and K is chosen

such that

S by =

The easse of desidgn comes from the observation that the
Fourier transform of the continuous Normal distribution is
also 38 Normal distribution with scsle rarameter (variance)
ecual to 1/d§ As long 3s (0~ > 2) and truncation is not more
severe than |N| » 26y a3 reasonable arproximation of the

freauency resronse for the Gaussian didital filter is
G(v) R exr(-g vi/2)

The scale rarsmeter was chosen such that the freequency
resronse was equal at (v = 0,35). Skipping the aldebraic
detailsy this required (& = 3.11)., The Gaussian smoother was
truncated to (N = 7)y resulting in a filter sean of 15 data
roints., The freauency resronse of both filters is rresented
in fidure 21y and the filter weidhtingd coefficients are
rresented in fidure 22,

Since we truncated +the Gaussian smoothery we would
exrect some ripples in the tail of the freauency resrorser
which are Just barely visible in figure 21, The Gaussian
filter has a3 sharrer transition bands and is euite effective
in blocking hidgh freauencies. As comrared to the Kalman

smoagthersy the Gaussian fTilter weights the eresent data roint
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FREQUENCY RESFOHSKE OF SINGLE AND DOURLE FIL.TERS
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lessy nearby data roints more and farther dals roints less.
The rerformance of the Gaussian smoother on the datas of
fidure 8 is rresented in fidure 23. A comparison of the
Kalman and Gaussian smoothers is presented in fidures 24 and
28, In fidure 24, the smoothers a3re arrlied only to the
nomina} function. It can be seen that the Gaﬁsqian smoother
followea the discontinuities and corners of the nominal
function better than the Kalman smoother. Howeversy when the
smoothers were arrlied to the noisy datay the resuylts were
less clear (fidure 25). The Baussian smoather 3dain followed

the nrominal function a bit betters but it also followed

low-freaquency comronents of the noise &5 oit morey tending to

emprhasize cuclic effects that aren’t really there. The mean

sauare difference between the smoothed estimate and the
nominsl function were very similars 1.81 for the Gaussian
smoother and 1.84 for the Kalman smoother, Thus, the Kalman
filter seems quite effective when used as 3 smacther. The
reader is reminded that the mean sauare difference for the
scalar Kalman filter was S.1y which clearly indicates the

sureriority of smoothing over filterind.

D. FREDICTION

Prediction is difficult, Recall that a stochastic
process is an ensemble of rossible pathss while data is the
manifestation of one member of that ensemble. What could
have harprened didy but what can harren isn’t necessarily

dgoing to. Frediction can be thought of as filterind without
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measurementsy and the estimaste is rrodected forward in time
through the state transition model. Filtered or gsmoothed
estimates may be cuite accurater even if the state transition
model is rnot. Howeversy dood eredictions are heavily
derendent on an accurate state transition model.

The hidher-order Kalman filters sre rolunomial models.
Hamming has rointed out that rolynomizl models are rpoor
rpredictorsy since the estimate tends to veer off to elus or
minus infinity a3s soon as the model is released from the data
Lref.71, There is no recquirement to use the same model for
rrediction as for filterind. For examrler it might make sense
to track 2 tardet with an acceleration filters but to compute
fire control information based on 3 constant-velocity model,
since tardet acceleration is denerally assumed random with
Teroc mean. Similarlyy the economist may desire to filter
data with a high-order models but make rpredictions based on
constant +trernd. Clark [L[ref.5]1 discusses a somewhat more
sorhisticated method due to Sindgers in which the model decaus
from an acceleration rredictor +to 8 constant-velocity
predictor 3s srediction time incresses. Such techniques are
heuristic in naturer but can efrove valuable to the innovative
analust,

An interesting examprle of the above concert camn be fourd
in Box and Jenkins L[ref.111, They comrared a auadratic
forecast due to BRrown L[ref,.10]1 with their own IMA(Os1s1)

mocel with 3 dg3in of 0.9, The latter model is equivalent to

the steadu-state scalar Kalman filter., Tro data used for the

comrarison was 3 time series of IBM stock srices. Box and




Jarkins observed thatr while the aquadratic model might well

be used to fit the datsy its merformance a3as a3 predictor uwas

clearly inferior to the simsler IMA(Os1+1) model. This is
riot surprisindy sino it has lond been suddested that stochk
Frices behave as a3 random walks and that the best forecast of
stock erricey a2t least in the short runy is the present rrice
Cref.113. Note that the foredoind imelies that the dain
should be set to 1.0y which corresronds to no filtering at
all, Thereforer Box and Jenkins arparently found that some

filterind of the data was arrrorriater even though the dasin

they used was quite hidgh.

i
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V. SOME REFINEMENTSy EXTENSIONS AND ALTERNATIVES

A. ADAFTIVE FILTERING

In the linear Kalman filters the dgain is comeletely
inderendent of the data, Clearlysy this will result in mador
errors if the dain is chosen inarrrorriately or 1if the data
statistics chande. If the d3in is too lows the filter lads
badlyu. In the extreme casey which oceccurs if the Frocess
noise covariance Q is much too lowr the filter r3ys much too
much attention +to the rast and diverdes from the data. 0On
the other hands if the gain is too highy the filter raus too
mucts attention to the data and the state estimate cantains

noise., If the filter is a3 polsnomial model and is to be used

3s a predictory the resulting errors will be srectacular. g

The solution is simeple in concert hut can be difficult

to imrlement. One simrly sets the steadu-state dain 3s low

- N
A T R AT

as arprorriate for the stable rrocess beind estimated. In

tardet tracking: the dain would te set to track am airrlane
fluing a straight rath. A "maneuver detector® or *trend
detector® is incorroratedy which is nothindg more than 3

recursive gtatistical test arrlied to the residuals to

determine whether or not they come from 3 =ero—-mean

il MWWMM&MWMM%EWW%

distribution. If noty the bandwidth is gradusally widened

(dain is increased) until the residuals pass the zero-mean

test. Thens the dain 1is allowed to decrease toward the

stablesy steadu—-state value.

P R TR
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Further detsils and some novel arerosches are discussed
in Clark Lref.33. Two edamrles taken from Clark are
illustrated in figure 26, The concertusal adartive filter
discussed abaove requires time to detect the maneuver or
trendy adart to its, and reconverde to 3 stable gain settind,
During this timer th- s°3te estimate is less accurater and
the time reauired may be wunaccertably lond for some
arrlications.

Clark eroroses 3 dual-bandwidth adartive filter to sreed

adartation. The rrocess is simultaneously tracked by 8

narrow-band and 8 wide-barnd filter, If 2 marneuver or trend

ig detactedy the state estimate of {e wide-band filter is

VAt 1 AL 0 110 81 1 TS L1 o Pt e -k 8, Bl

fed into the narrow-band filter. Ideallyr this would allow
the rniarrow-band filter to Jums immediatelw to the current

. (unbiased) estimate of the wide-hand filter. In eracticer

——

i AR ARl 2w

Clarvk fournd that some widening of the bandwidth of the

DS, ST
T e e G AN LD e e L

narrow-band filter was also recuired,

Voluminous literature exists on the subdectr much of it
very difficult to read. Clark C[Cref.3]1 incorrorates 3
rarticularly lucid account of stability sraoblems ercounteredy
methaods of reducing the cost of false detection of biasy
analutical methods of determining filter rarametersy and
exrerimental results, Although Clark’s filter was desidned

to track and predict the rposition of airborne tsrdets, the

e R e e

methods discussed zre adartable to the filterindg of ecornomic

. time series or virtually any other stochastic rrocess.
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R.

NON-LINEAR FILTERING

In the rnon-linear Kalman filters» one or more of the
matrices Qs Ry Hy or § are allowed to vary with time. Since
this results in a8 time-variation of the dain matrix
auantitative aralysis in the freauency domsin is no londer
arrrorriate. Howeversy it is well to keer the cormcerts in mind
irr order to dain sdditional insight. There are two bhasic
tures of non~linearities that may arisej’ non-linear

measurements and non—linear dunamics.

1. Norn-Linear Measurements

Non~linear measurements arise when observations are
made in one coordinate sustem and the model recuires that the
. state be estimated in znother coordinate sgstem. In this
casey the matrices R and H are time-varging functions of the
coordinate transformations and do derend on the datar in the
sense that thew derend on the location of the data within the
coordinate sustem. This ture of non—-linearity is often easy
to handle,

For the best examele of non~linear measurements we must
return to the tardget-trackingd model. Fire control sustems
generally track in azimuthr elevationr and rande. However:
the model ie a polwnomial in Cartesiam coordinatesy but not
in polar coordinales, Airrlanes aoften flu 3 straight raths
but seldoms if every fly a3 vonstant bearind or rande with

resrect to the radar observer. In this models the
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rnon-linearity can be reduced by considering the Cartesian

measurement arror a8s a8 linear transformation of the reolar

measurement error. I +the rolar measurement error is ’

R

Gaussiany the Cartesian measurement error is very nearly

Gaussian with caovariance matrix R a function of the

coordinate transformation.

oo

The Cartesian R matrix will not be diadgonaly even if the
rolar R matriy is. Howevers Clark Lref.51 has found that
setting the off-diadonal terms of the Cartesian R matrix to

zero did not arrrecishly dedrade filter rerfarmance., In this

w3yy he was able to decourle 3 nine~state filter into three

three-state filters.
If the measurement ron-linesrity is too severer it may

rnot be reasonable to assume that the noise iz Gaussian. :

Howevery limited exreriments rerformed on data with
rnon-Gayssian noise (an sronential distribution was wused)
showed that the Kalman smoother and the Gaussian smoother
were auite robust as longd a3s the d4ain was not hidgh. This
seems to be 3 consecuence of the Central Limit Theorems since

low dain implies a8 linear combination of a fairly larde

number of dats roints. It should be roted that a3 filter
desidned to handle this situation is still linearr although

the Gaussian assumption is violated.

2. Non-Linear Runamics

Non-linear dunamics are considerably harder to handle
than non~linear measurements. This is unfortunater since the

areas of rotential arrplication are numerous. Norm—-linear
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duynamics occur when

erevious historw of the rrocess.

As

model

where

models

56r we

#(t) and (t)s but slso the redression coefficients a and b,

Let us assume we can measure 4 (L)y xﬁt); and gét); but not a

and b,

a2 simrle examples consider the multirle redression

u({t) =

y({t-1) corresrcnds to the intercert term. In this

we wish to estimate the derendent variable 4(t). To do

need to estimate not only the inderendent variables

Assuming 3 f

equation is

Where the transition matrix is unfortunately rot unicue. The

first

P -  —
y{t+iit) 1
EXIEES 0
g§t+1=t) = 0
a(t+iit) 0
b(t+1it) 0

row of the tra

rerresented bu

£1

the @ or § matrices derend on

a #(t) + b () + 9(t-1)

irst—-order sustemy the state urdate

actity betity 0 0| [uctiey]
1 0 0 0 |xttit)
0 10 0 |xtity
0 0 1 0] |attit)
0 o 0 1] lbctie]

nsition matrix could be ecually well

0 0 x(tit) x(tit)l

- 2o 2 i SO



or even

L1 a(tit)/2 bltit)/2 x(eit)/2 x(tit)/2 1

and it obviously chandes at every iteration., It is at this
roint thet filter desidn becomes an art.

Note that the inderendert variables and the redression
coefficients are assumed here to be first-order Gauss—Markov
rrocesses. Increasingdly high orders would multirly the state
sFrace.

Several exreriments were run usind a3 second-order model
similar to the above on the Box-Jenkins [ref.11]1 series M
data (sales data with leading indicator), Quantitative
results are not rresenteds because the Box~Jenkins data did
not include sufficient forecast estimates for comeparisons
some "cheatind® was done because the Boux-Jenkins rarameters %
were used in filter desidny and it never became clear exactlyu
what rarameters were arrroepriste for the R and Q matrices.
Howevers some aualitative comments are arrrorriate. The
model did work, Some irnstability was noted in the redression
rarameters, It became obvious that the dain on the
redression parameters must be set verd low in comrarison to
the dain on the inderendent varisbless in order +to keer the
redression rarameter estimates from varuing faster than the
estimates of the inderendent variashles. This imelies
choosing small values for the nmnoise variance of the

redression sarameterss Alsor iy keerind the Hain fairly low




on the leading indicators it was rossible to induce 3 mhase
lag that seprroximastels cancelled the lead.

The reauirement to keer dain low in order to imFrove
stability is evidently 2 conseauence of the increased idedrees
of freedom. The more parama2ters to be estimated, the more
dedrees of freadom in the model. High g3in is analadgous to
relatively few data rpoints beind used in redression. The
more variables we introduce into the modely the less dain we
are able to use.

It is indeed wunfortunate that multirle redression is a
non—-linear erroblem when cast in @ filter model. It would be
useful +o have 3 multirle redression model for which more
recent ohservations were weidhted more heavile than older
omes in determining the redression parameters. No doubt the
innovative analust could develor one to fit the seecific
situation. Howeversy clearly—~defined techniques with
demonstrated results are not available to the eractitioner.
The exrerts 311 have their favorite methodss and much of the
literature is difficult to read. There is clearly a3 need for

gdditional research in this area.

Cs MNON-PARAMETRIC FILTERING

We close our dizcussion with an interesting alternative

to conventional digital filtering technicues. There are

those who 3are hothered by the usual distributional

assumprtions made inm anwy arrlication of rarametric statistics.

An extensive literature hae Jevelored in the field of




bl s e

ron—rarametric statisticsy which is based an  the srincirle
that distributional assumsrtions are svoidedy or at least
weskened. A strong roint of non-rarametric statistics is
relative insensitivity to extreme outliers. Howevery little
srodress has been made in the non-rarametric snalusis of time
series. An excertion may be found in Tukey Lref.16]1y» which
is rresented in a highly intuitive manners with little or no
thearetical hackdround.

One simrle idez advanced by Tukew is that of median
smoothind, The smoothed estimate ;s based on the median of
several addacent data rointsy rpather than on 3 weidghted
linear combination. The rasult is oouviousls a series of
stersy since adudacent data roints will often have the same
median. Tukew susgests several methods +to restore some
cyrvature in the estimate. Ther2 will not be deveiﬁped here,
Tukew’s methods would be relatively hard to mecharize on 3
comruyters becasuse the methodolodgy reacuires extensive lodical
rules.

Tukey’s methods could be extended to real-time filtering
rroblems by develoring a non-rarametric anslod to the
recursive cdidgital filter. Recsll that the recursive didital
filter consists of a3 weidhted linear combination of recent
data roints added to a3 weidhted linear combination of recent
estimates. Th: non—-raramernric filter estimate would simrly
be the median of several recent data roints and several
recent states, The idea is intuitively arrealing and should
he the subdect of future research, Uiscussion here will be

limited to some of the more obvious trars that zwait the
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urWary.

It such 3 filter were to be desidgned, the
imrulse-resronse function would he meanindglesss because the
median estimate would 3luzsys be =ero if the sran of the
filter were dreater than two. Neverthelessy 3 median filter
does have a3 freauency resronsey which in fact 1is a3
articularly nasiy one.

Consider a3 seven—-roint median smoothers where the state
estimate at time t is the median of the measurements made at
time (t-3) to time (t+3). This is analadous to the
rectangular (raraaetric) window discussed in Hammindg Lref.71.
The rectandular window weights all data peoints within the
window equally, The median window obviously does the same.
As 3 resulty we would exrect the freauency resronse of the
median window to have severe risples as does that of the

rectandular window. We can see intuitivelw that this is true.

e s S Laeat A 01, A

R T T S

Since tha sean of our examele medisn window is 7y the

freeuency resronse of any frequency that 1is a non-zero
inteder multirle of 1/7 is obviously =zero. The freacuency
resronse at zero frequency is onesr since the zero frequence

imelies 3 constant. The amrlitude of the frequency resgonse

falls off to the first zeror then rises ada3in. Successive

maxima decrease uwith increasind frequencus but the freauency

resronse is 38lways non—zero excert a3t freauencies that are

rnon~zero inteder multirles of the recirrocal of the sean of

the window. Thusy the non—-parametric filter will need to

wy i, 1100 Gl (Lt b
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. incorrorate some (ursrecified) device to imerove the

freuencyY resronse.



Two other difficulties are worthy of mention. Firsty
the sampling distribution of the median may have a larder
variance than the samelindg distribution of the mean. This
means that the rarametric filter mag =rovide 2 better

estimate than the nmon-rarametric filter if the assumptions on

which the rarametric “.lter is wa-~d 3 % all reasonable.
Secondy for the o o~ T 2 fPilter 2 be usefuly the
median must be 3 of interest., If it is assumed
that the distribu: - etricy the median and mean ares
of coursey equsl. ..oe2aerl v 4 distribution is sk : . »
mean cannot be a2duces from the median wunle pict

sarametric assumetions are imposeds which of courses overvide
the Justification for the non-rarametric filter in the first
place, The ides is nevertheless intriduingy and should be

exrlored further.




VI. SOME AFPLICATIONS

The Kalman filter has been arrlied to Orerations Research
and economic pProblems with varsind dedrees of success.
McWhorter Lref.17] conducted an emrirical study of the Kalman
filter in which he comepared it to several other methods of
time series forecastind., The results were mixeds with no
method dominating, The Kalman filter comerared more favorably
over 3 short term forecasting horizom tham over a3 long term
one., Its rer®armance wass not surrrisindlys found to be
dedraded if the structural model was seriously mis-srecified.
McWhorter rointed out some of the difficulties encountered in
building the model., In an ecornomic contexty it is often very
difficult to srecify the noise covariance matrices R and Q»
and even to identify the structure of the state transition
matrix . The assumptions made are often sweerindg and
arbitraryy in contrast +to trackind arrlications where the

noise rrocesses and especially the state transition model are

relatively well understood.

A. INVENTORY MANAGEMENT

The Kalman filter is directls arprlicable to inventory

manadementsy and if prorerly designedy should be surerior to

the finite exronential smoothind model of Ressler and Zehna

[ref.141, Downinds PFikey and Morrison Lref.18]1 desidred 3
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Kalmsn filter for the inventory control of rnuclear material.

The raper is readablesr and the filter is well-documented and
easy to understand. Thewy wuse the concert of a control
vectory which has not been mentioned here. An interesting
reculisrity of the model is that one of the measurements is
only available once every twenty iterations. The state
transition matrix is 38 simrle material balance relation which
is obviously euite accurate. Such a3 model could be exrected

to rerform auite well.

B. ESTIMATING A MEAN FUNCTION

Although the Kalman filter was derived from an assumrtion
of stationarityy we Hhave seen that it can be quite rowerful
in serarating a8 time varuind signal from noise. The examples
of section III were all essentially estimates of the
time-varuind mean function of a2 stochastic rrocess. The
examrle rrocess was Gaussian with a comstant variamce. The
variance was the measurement noisey and so directly
influenced the dain. If variance were not constants, the
rerformance af 38 non-adartive filter would he dedraded. If
the chande in variance was dreat enoughy an adartive filter
would be required.,

A dood method of estimating a time-varving mean function
could be upeplied in numerous 3reasr such as any sort of
traffic or flow control sroblems rerhars in @uality control
of 1larde-batch. or flow marufacturing erocessess and any

arrlication where it is desirable to detect 3 chande in the
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FrOcess. The sensitivity of the filter is directly
adJustable by the modellaer throudgh the noise covarisnce
matrices Q@ and R,

A rarticularly useful arrlication would be to the
estimation of +the rate rarameter of 3 non-time-homodeneous
FPoissan srocess. If this can be done accuratelwy the rraocess
can be transformed to a stationarye one Lref.63r which dreatly
eirands the number of analwtic tools that can bhe used.

The FPoisson Frocess is 38 counting rrocess in continuous
times and to attemrt to filter a string of interarrival time
data would wviolate the samrling theorem. The times of
arrival are the measurement timess and they are most
certainly not made at ecually sraced intervals. Insteads the
filter may be designed to samrle 3 counting rrocess. At
discrete intervals the filter would count the number of
arrivals since saome arbitrary time oridgin, If +the rrocess
were to continue for 3 1lond timey the time originm might
occasionally have to be reset to rrevent comruter overflow.
It is eas' to see how this samrling rrocess could be
imerlemented evern if the ineput data were actuslly arrival
instants in continuous time., The sampling interval should be
sm3ll enough that there is low rrobability that more than one
arrival would occur durind a3 diven measurement interval.,
Since the number of arrivals is monotone non—-decreasing in
times 3 velocity or trend model would be arprorriate., The
inrut data would consist of inteders. The state estimates

would not. The non-inteder estimate of number of arrivals ur

to the current time would not be useful to us. Howeverr: the
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second element of the state vectory the velocity or trend:

would in fact be the filtered arrival rate estimate., Since
. tha Process is noisy arnd non~-Gaussiany 3 wvery low
steaduy-~state dain is arrrorriate.

. The time-varwing Poisson srocess cannot have constant

R R e

variancer since the mean and the variance are ecual. A4 low E

arrival rate implies hidgh variance in the Poisson grocess:s

ol 40 1

which is equivalent to hidgh measurement rnoisesr which requires :

low dain. A constant-dgain filter would therefore bhe

o o

relatively more sensitive at low arrival rates than at high

arrival rates. An adartive filter could be easily desidned

G b g

to use the inverse of the rate estimate 3s the measurement

ey

noise variance estimate. Stability might require that the

wead e b an

ad.ustment of the measurement noise variance be itself a

N

filtering processy in which the ircomind variance estimate is

redarded 35 data.
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€. MULTIPLE REGRESSION

If the redression constants are assumed krown (or

Sl o T SR o n

comruted by other means) the desidn of an arPprarriate filter
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is aquite straightforwardy and aquslity of estimation is

k0 P W

related directly to the qualitw of the model. Note that the
velceity filter is simerlue the redression of velocity on

rositiony where the slore rarameter is kriown to be one. If

Sl fa At Wi &t

the redression coefficients are assumed to vary in timesr the

rroblem becomes non-lirear and is aquite comrlex. FRecause of
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the immernse arrlicability of this model, additional




develormental work is indeed 3 fertile field for future

research.

D, GSOME DESIGN CONSIDFRATIONS

In arplications where the noise covariance matrices R and
Qs and the sustem dunamic model (state transition matrix §)
are known or easily estimatedy desidn is straightforward
and has been successfully accomrlished while remainindg in the
time domain. Howevery in arelications where sweerind

assumptions are reecuiredy a3 frequencuy-domain analusis cowuld

be very heleful. Some duidelines are 3s follows?

1. Srectral Analysis of the Dats

A srpectral analusis of sample data will s 5w what the
freauency response of the filter should be. The Fae: Fourier

Transform (FFT) prodgram available in most comruter iibraries

%
=
i
=

=

is denerallwy easy to use. Howevery the FFT erodrams -
H
denerally require an exact rower of 2 for the numbher of datsa

i

roints. Hamming Lref.7] roints out some eitfalls. Since

stationarity is assumedy the data should be considered as a

TR o S o

rotating culinders and if the starting and ending values are

not similary a3 discontinuicy will exist in the srectrum. The

data can be tarered and padded with =zeross but exactlus the
best metiod to accomplish this is wunkriown. Several methods
might be tried,

The main virtue of the FFT 1is its sreed. It works well

on 2 long run of data. If the number of data roints is smazll
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(around a hundred) it might be effective to find (or write) 3
less efficienty conventional discrete Fourier transform
prodrams which would not recuire eaddedy truncatedy or
tarered data if the starting and endind values are similar.
If the FFT erodram used does not reauire an exact rower of
two for the number of inrut data rointsy it would be well to
find out why not. The srodgram may he doing the radding and
tarering itselfy and the analuyst should be curious as to how.
The analust should remember that the srectrum is comruted
from the datar and it is therefore an estimate. If the run
of data is short, there will be considerable variance in the

estimate.

2. Freauency Analussis of Frorosed Models

The analust may test the effect of assumstions made
in designing the filter by simely obtaining an imrulse
respronse of the filter and rumning it through an FFT,
Truncation and tarerind is rno eroblems because the imrulse
resronse will areroach zero with time. The rrorer imrulse
function is simply @ 1 followed by 2 -1 zeros for a filters
6r 3 1 in the middle of 2" -1 zeros for a smoother. If the
output of the FFT consists af real and imadinarge componentsy

it will be necessary to comrute amrlitude and ehase.

3. AdJjusting the Model

If the model dunamics seem adequate but the bandwidth

is wronds the analust should by rnow have some insight inte

what addustmentes to maske to the noise covariance matrices to
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try to imerove things, In 2 model of any complexity at ally
there are numerous rossible combinations. Howevers even some
improvement over the initial assumrtions will be beneficisl.
We are not looking for theoretical eledances we are looking

for rerformance.

Perhars the model dynamics obviously c¢asll for a trend

filter or even a3 chandge-of-trend (scceleratinon) Filters but

the data is aute rioisv. Consideration should be diven to

lowering the order of the filter, A very low-dain veiucity
filter will not follow changes in trend well. A higher-dain
scalar Pilrer maw do so more effectivelsy althoudgh it will
lag 3 steads trend. There are many tradeoffsy and we cannot

achieve rerfection.

4, Testing the Model

The mocel should be tested on real or simulated data.
From here ony the modellind rrocess is the standard cwclical
oney doing bachk to earlier sters as riecessary until

satisfactory rerformance is achieved.

IRt

C AT RS T




APFENDIX A, DERIVATIONS

1., SCALAR RKALMAN FILTER

3+ Recursive Formula for Kalman Gain

The covarisnce extrarolation eauation
P(t) = § Z(t-1) § + Q
reduyces in the scalar case to

F(t) = Z(t-1) + Q

K(t) = Sct) HR
we may writer for the scalar casey
S(t-1) = K(t~-1) R
Similarlys since
v T -1
K¢t) = PH L HFH + R3]

by reducing to the scalar case and substitutindgy we may write

—t—

K(t-1) R + @

——

R K{t-1) + Q/R + 1

KCt) = __K(t-1) R+ Q@ = _ K(t=-1) + Q/R
+

Steadu-State Kalmam Gain

Rearrandindg the recursive da3in eauation and lettind

K(t) = K(t-1) = K
2
K+ (Q/R)K - /R = 0
Buy the auadratic formula

K =

We are oblided to take the larder roots since the smaller
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root weculd force the dain to be medative. We s3lso observe the

inverse relationshipr

¢ + a/2RY = 02/4R%+ QR
K+ Q/RIK + GR/ar* = @' /4R + a/R
' K% = (Q/R) (1~K)

Q/R = KX/¢1-K)

ce Transient Kalman Gain

Recall that the Kalman filter requires & prior state
estimate X(0) and a Frrior estimate of covariance P(0). This
reaquirement can be avoided by usind K(1) = 1y which 3llows
the initial state estimate to be equal to the first
measurement. Recail that

Ket) = Z(t) HR

Since K(1) = 1y then 2(1) = R

d. Amrlitude and Phase of Frequoncy Resronse

The frequencYy resronse is

HOV = 3 2 [b exp=iv)1°
t=0

il oy

)

since
o exp(-ivd ) -
then
H(v) = 3 / L1-b exr(~iv)]
The amplitude scuared ig

Az = H(v) H(~v) = 3 / Ll-b exr(-iv)1 [1-b exp(iv)]




Hwy Euler‘s relation

Ql

it

a/ [1 + g ~2b cos vl
which may be written
At = 8%/ £a1-p)" + 2b(1-cos V)1
! recalling that
a/R = K*/(1-K) = a%/b

we may write the amelitude as

A = Q/R
Q/R + 2{(1l~cos )

The rhase andle is

8(v) = arctan LIm(v) / Re(w)]
where Im(v) and Re(v) are the imadginary and real rarte of
H(v)y which maw he written

H{v) = 3 Cl-b exs(iv)]
L1-b exr(-iv)IL1-~bh exp(iv)]

H(v) = 3 (1th cos v ~ib sin V)
1 + b =-2b cos v

which allows us tc write
8(v) = sretan c(~bh sin v) / (1-h cos v)1

The andgle for maximum phase shift occurs when

d8{v) = J£'~ b cos v = 0
dv 1 + b*-2h cos v

s0 that the maximum rhase shift 8(vImax occurs when
vV = agrccos b

arnd has a value af

8(vImax = arctan b sinlarccos b)

1-b cos(arccos b)

/1-t%)

= gretan ( ~-b / v i




2., IMPULSE RESFPONSE FUNCTIONS

The impulse--resronse of the scalar Kalman filter is

: d(t) = ab’ £ = 0s192r00s

a. Imrpulse-resronse of Double Filter

4(t) = ab @ ab

© t .
| 4(t) = Zab"abt"‘ = 8 Dbt
; ‘g.” 0

4(t) = (t+1) alef

b, Impulse-resronse of Scalar Kalman Smoother

-t
a(t) = ab° @ ab '

S & S ik <
gt) = > a b aftt = 275N S S
As-n bze h3ze

a¢t) = atbl/ (-t = a bS/C14d)
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